Minggu, 15 September 2013

Transformasi Geometri

Transformasi geometri merupakan ilmu matematika yang mempelajari tentang pemindahan titik atau kurva dengan metoda tertentu.
Jenis-jenis transformasi geometri tersebut adalah
1. Rotasi (perputaran)
2. Refleksi (pencerminan)
3. Dilatasi (perbesaran)
4. Translasi (pergeseran)

Dalam melakukan perhitungan transformasi geometri ini, biasanya kita menggunakan matriks untuk mempermuadah perhitungan
Matriks-matriks tersebut adalah
1. Rotasi 90o berlawanan arah jarum jam


2. Rotasi 180o berlawanan arah jarum jam


3. Rotasi 270o berlawanan arah jarum jam


4. Rotasi  t berlawanan arah jarum jam


5. Pencerminan terhadap sumbu x


6. Pencerminan terhadap sumbu y


7. Pencerminan terhadap garis y = x


8. Pencerminan terhadap garis y = -x

Minggu, 20 Januari 2013

Kuadran Trigonometri

Koordinat kartesius terdiri atas 4 bagian. Bagian ini yang seringkali disebut dengan istilah kuadran. Keempat kuadran tersebut adalah kuadran I, Kuadran II, Kuadran III, dan kuadran IV
Di kuadran I semua fungsi trigonometri positif
Di kuadran II sinus dan cosecan positif, sedangkan yang lainnya negatif
Di kuadran III tangen dan cotangen positif, sedangkan  yang lainnya negatif
Di kuadran IV cosinus dan secan positif, sedangkan  yang lainnya negatif


Mengapa di kuadran I semua positif ?
Karena di kudran I nilai x positif dan y juga positif , sedangkan r di kuadran manapun tetap positif.

Mengapa di kuadran II sinus positif ?
Di kuadran II nilai x negatif, sedangkan y positif. Nilai r di kuadran manapun positif
sin A = y/r = (+)/(+) = (+)
cos A = x/r = (-)/(+) = (-)
tan A = y/x = (+)/(-) = (-)
 karena sinus positif maka kebalikan dari sinus yaitu cosecan juga positif

Mengapa di kuadran III tangen positif ?
Di kuadran III nilai x negatif, dan y juga negatif. Nilai r di kuadran manapun positif
sin A = y/r = (-)/(+) = (-)
cos A = x/r = (-)/(+) = (-)
tan A = y/x = (-)/(-) = (+)
  karena tangen positif maka kebalikan dari tangen yaitu cotangen juga positif

Mengapa di kuadran III tangen positif ?
Di kuadran IV nilai x positif, sedangkan y negatif. Nilai r di kuadran manapun positif
 sin A = y/r = (-)/(+) = (-)
cos A = x/r = (+)/(+) = (+)
tan A = y/x = (-)/(+) = (-)
 karena cosinus positif maka kebalikan dari cosinus yaitu secan juga positif